الامتحان التجريبي رقم 2 المادة : الفيزياء و الكيمياء مدة الانجاز : 4h الثانوية التأهيلية الخوارزمي آسفي

الموضوع: الامتحان اتجريبي رقم 2 للسنة الثانية بكالوريا

1/9	الصفحة
7	المعامل

الفيزياء و الكيمياء	المسادة:
شعبة العلوم الرياضية (أ) و (ب)	الشعبة:

مدة الإنجاز 4

استعمال الآلة الحاسبة القابلة للبرمجة أو الحاسوب غير مسموح به

يتكون الموضوع من تمرين في الكيمياء و ثلاثة تمارين في الفيزياء

النقطة	الموضوع	الكيمياء (7 نقط)
2,75	تصنيع فيرومون	الجزء الأول
4,25	تحضير منظف و تتبع تحول كيميائي	الجزء الثاني
النقطة	الموضوع	الفيزياء (13 نقطة)
2 ,5	الاندماج النووي	تمرين 1
2,5 2,5	الجزء الأول: إقامة التيار في وشيعة الجزء الثاني: إنجاز دارة انتقاء لتردد محطة	عرین 2
3 2,5	الجزء الأول : سقوط مظلي الجزء الثاني : حركة قمر اصطناعي	ټرين 3

الامتحان التجريبي رقم 2 المادة : الفيزياء و الكيمياء مدة الانجاز : 4h

الثانوية التأهيلية الخوارزمي آسفي

الكيمياء (7 نقط)

الجزء الأول: تحضير فيرومون

الفيرومونات مركبات كيميائية تستعملها الحشرات من أجل التواصل فيما بينا . هناك فيرومونات تستعمل من أجل التجمع و أخرى من أجل التعقب و نوع آخر يستعمل للإنذار و للهجوم

سندرس في هذا التمرين تصنيع فيرومون P يستعمله النحل للإنذار صيغته نصف المنشورة هي :

معطيات :

الذوبانية في	درجة حرارة الغليان	الكتلة الحجمية	الكتلة المولية	
الماء	$(^{\circ}C)$	$\left(g.ml^{-l}\right)$	$\left(g.mol^{-l} ight)$	
قابل للذوبان	118	1,05	60,0	A:CH3COOH
قليل الذوبان	128	0,81	88,0	کحول B
	100	1,00	18,0	الماء
قليل الذوبان	143	0,87	130	فيرومون P

يمكن تحضير الفيرومون P انطلاقا من حمض الإيثانويك A و كحول B . ندخل في حوجلة حجما $M_A=14,3ml$ من حمض الإيثانويك و كتلة $m_B=22,0g$ من الكحول B ، ثم نضيف قطرات من حمض الكبريتيك المركز . نسخن الخليط المحصل عليه بالارتداد لمدة $m_P=21,7g$ التفاعل نحصل على الكتلة $m_P=21,7g$ من الفيرومون P .

1) تفاعل تصنيع الفيرومون P .

- 1 1) أعط الصيغة نصف المنشورة للكحول B و اذكر اسمه .
- 2 . 2) أكتب معادلة التفاعل التي تمكن من تصنيع الفيرومون 2 .
 - 3 ـ 1) أذكر خاصيتين تميزان هذا التفاعل .
- . ${\it K}=4$ مردود هذا التصنيع ، ثم بيِّن أن ثابتة التوازن r

2) تحسين مردود التصنيع .

. نفس الظروف التجريبية B من الحمض A من الحمض A من الحمل B ثم نسخن بالارتداد A

الامتحان التجريبي رقم 2 المادة : الفيزياء و الكيمياء مدة الانجاز : 4h الثانوية التأهيلية الخوارزمي آسفي

- . لهذا التحول x_f' لهذا التحول .
- . 2 مردود التفاعل في هذ الحالة r' مردود التفاعل في هذ الحالة .
- 3 ـ 2) من أجل تحسين مردود تفاعل الأسترة ، اقترح أحد التلاميذ إضافة كمية وفيرة من حمض الكبريتيك أو إزالة الماء أثناء تكونه . حدد الاقتراح الصاءب مع تعليل الجواب .

الجزء الثاني : تصنيع منظف

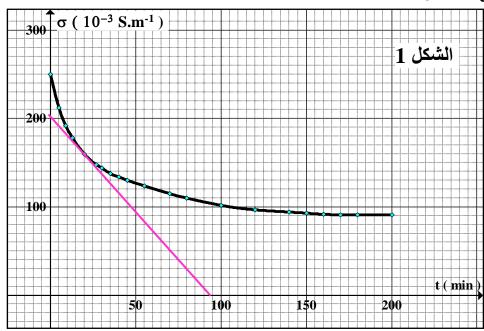
3 ـ تصبن إيثانوات الإثيل .

تصبن إيثانوات الإثيل هو التفاعل الحاصل بين محلول الصودا (أو محلول البوتاس) و إيثانوات الإثيل.

تكتب المعادلة الكيميائية المقرونة بهذا التفاعل كالتالي:

 $C_4 H_8 O_{2(aq)} + (Na^+_{(aq)} + HO^-_{(aq)}) \iff Na^+_{(aq)} + A^-_{(aq)} + B_{(aq)}$. عند الصيغة نصف المنشورة للنوع الكيميائي ميائي $A^-_{(aq)}$ و أعط اسمه . 3 - 1

2 ـ 3 ـ هل التفاعل كلي أو غير كلي ؟


4 ـ الدراسة التجريبية لحركية التصبن بواسطة قياس الموصلية .

عند لحظة t=0 ، ندخل في كأس يحتوي على محلول الصودا ، إيثانوات الإثيل حيث نحصل على محلول حجمه

. $C_0 = 10^{-2} \text{mol} / \text{L}$ و ترکیزه V = 100 mL

نبقى درجة الحرارة ثابتة عند **30°C** .

نغمر في الخليط مجس مقياس الموصلية الذي يمكن من قياس ، في كل لحظة ، الموصلية o للمحلول ، فنحصل على منحى تغيرات o بدلالة الزمن (الشكل 1) .

الامتحان التجريبي رقم 2 المادة : الفيزياء و الكيمياء مدة الانجاز : 4h

الثانوية التأهيلية الخوارزمي آسفي

ليكن (x(t) تقدم التحول عند لحظة .

1 ـ 4 ـ ما الأنواع الكيميائية المسؤولة عن الميزة الموصلة للمحلول ؟

: $\mathbf{S.m^2.mol^{-1}}$ ب λ فَسِّر لماذا تتناقص موصلية المحلول خلال الزمن .نعطي : الموصلية المولية الأيونية λ

$$\lambda_{A^{-}} = 4.1 \times 10^{-3}$$
 ; $\lambda_{HO^{-}} = 2.0 \times 10^{-2}$; $\lambda_{No^{+}} = 5.0 \times 10^{-3}$

. $\mathbf{x}(t)$ و الموصليات المولية المحلول عند لحظة $\mathbf{x}(t)$ و \mathbf{v} و \mathbf{v} و الموصليات المولية الأيونية \mathbf{v}

$$\mathbf{x}(\mathbf{t}) = C_0 \mathbf{V} \cdot \frac{\sigma_0 - \sigma_t}{\sigma_0 - \sigma_f}$$
 : a is a pure it is a pure $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$ are $\mathbf{x}(\mathbf{t})$ and $\mathbf{x}(\mathbf{t})$

حيث σ_0 موصلية المحلول عند اللحظة t=0 و σ_f موصلية المحلول في الحالة النهائية . أحسب x_{max} التقدم الأقصى . t=0 - الدراسة التحريكية

. $t_1 = 20 min$ على مبيان الشكل 1 ، حدد قيمة السرعة الحجمية للتفاعل المدروس عند اللحظة

. t_1 au sik like x=f(t) au Δ

2 ـ 5 ـ فسر كيف تتطور هذه السرعة خلال الزمن . ما العامل الحركي المتدخل ؟

3 ـ 5 ـ عرف زمن نصف التفاعل ، أوجد قيمته .

الفيزياء (13 نقطة)

التمرين الأول : الفيزياء النووية (2.5 نقطة)

انطلق برنامج البحث ITER لدراسة الاندماج النووي لنظيري الهيدروجين 3H_1 و ذلك من أجل التأكد من الإمكانية العلمية لإنتاج الطاقة عبر الاندماج النووي .

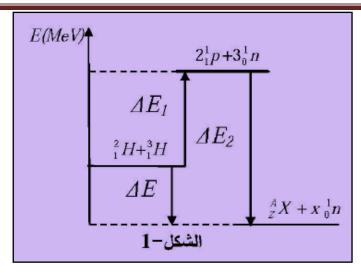
 2) أكتب معادلة الاندماج النووي بين الديتوريوم 2 و التريتيوم 3 ، علما أن التفاعل ينتج نواة 4 و نوترونا.

. عدد النوى البدئية N_0 للنظير المشع . 2

ـ درجة حرارة العينة المشعة .

ـ طبيعة النظير المشع .

اختر الجواب الصحيح من بين الإجابات السابقة .

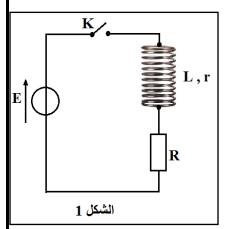

. أ ـ عرف طاقة الربط للنواة $E_l({}_{\!Z}^A X)$ ، ثم أكتب تعبيرها .

ب ـ احسب طاقة الربط للنواة و طاقة الربط لكل نوية : H , $_1^3H$, $_1^3H$, $_1^3H$ ، ثم استنتج النواة الأكثر استقرارا .

 $^{2}_{1}H$ و $^{3}_{1}H$ و $^{3}_{1}H$ و المشكل $^{3}_{1}H$ و المصيلة الطاقية لتفاعل اندماج نظيري الهيدروجين $^{3}_{1}H$ و $^{3}_{1}H$

المستوى: 2 SM ما 2 2013 / 2014

الامتحان التجريبي رقم 2 المادة : الفيزياء و الكيمياء مدة الانجاز : 4h الثانوية التأهيلية الخوارزمي آسفي

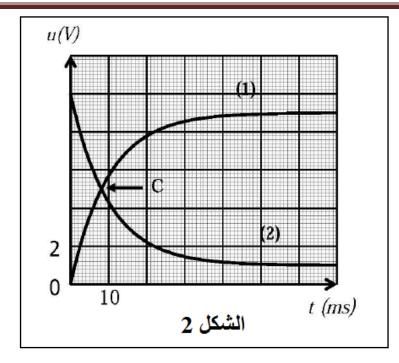


أ ـ أحسب القيمة المطلقة للطاقة المحررة عن تفاعل الاندماج الحاصل .

 3 ب ـ أحسب القيمة المطلقة للطاقة المحررة عن اندماج 2 من 2 و 3 من 3 من المراقع

معطيات:

 $m\binom{1}{0}n$ = 1,00866u; $m\binom{1}{1}p$ = 1,00728u; $m\binom{2}{1}H$ = 2,01355u; $m\binom{3}{1}H$ = 3,0155u; $m\binom{4}{2}He$ = 4,0015u; $1u = 931,5\frac{MeV}{C^2}$; $N_A = 6,02 \times 10^{23} \ mol^{-1}$



التمرين الثاني : الكهرباء (5 نقطة) الجزء الأول

 $R=90\Omega$. حيث t=0 . حيث t=0 . حيث t=0 . حيث t=0 .

- : u_R التوتر بين مربطي الموصل الأومي هي u_R التوتر بين مربطي الموصل الأومي هي $\frac{du_R}{dt}+\frac{R+r}{L}u_R=\frac{R.E}{L}$
- 2) تحقق أن التعبير : $u_R(t) = \frac{B}{A} (1 e^{-A.t})$ ، حل للمعادلة التفاضلية السابقة ، حيث A و B ثابتتين عبيرهما .
 - 3) باستعمال راسم التذبذب ذي ذاكرة حصلنا على الشكل 2

الامتحان التجريبي رقم 2 المادة : الفيزياء و الكيمياء مدة الانجاز : 4h الثانوية التأهيلية الخوارزمي آسفي

أ ـ أعد رسم الدارة ، ثم وضح عليها كيفية ربط راسم التذبذب لمعاينة المنحيين (1) و (2) (الشكل 2) .

ب ـ أنسب لكل منحني التوتر الموافق له مع التعليل .

ج ـ استنتج القوة الكهرمحركة E للمولد ، و المقاومة الداخلية r للوشيعة .

4) اعتمادا على نقطة تقاطع المنحنيين (1) و (2):

ثم أحسب قيمتها ، حيث t_{C} اللحظة

$$\tau = \frac{t_C}{ln\left(\frac{2R}{R-r}\right)}$$

أ ـ بيِّن أن ثابتة الزمن ت تحقق العلاقة :

الموافقة لتقاطع المنحنيين .

ب ـ أحسب $oldsymbol{L}$ معامل تحريض الوشيعة .

الجزء الثاني : إنجاز دارة انتقاء لتردد محطة إذاعية .

يمكن لمحطة إذاعية إرسال موجات صوتية ، متوسط ترددها 1kHz حيث تعتمد هذه العملية على مبدأ تضمين الوسع . لهذا الغرض نستعمل موجة حاملة وهي عبارة عن توتر جيبي ذا تردد عال تحمل الموجات الصوتية

1 _ تضمين الوسع

 $k = 1V^{-1}$ للتوترين الجيبيين ذي المعامل دارة متكاملة لإنجاز الجداء AD633 للتوترين الجيبيين ذي المعامل

عند مخرج الدارة نحصل على توتر مضمَّن الوسع تعبيره كالتالي:

 $u_s(t) = 3 \times (1 + 0.5\cos(2 \times 10^3 \pi t))\cos(5 \times 10^4 \pi t)$

1 ـ 1 من خلال التعبير حدد :

الامتحان التجريبي رقم 2 المادة : الفيزياء و الكيمياء مدة الانجاز : 4h الثانوية التأهيلية الخوارزمي آسفي

أ ـ المقدار $U_{
m sm}(t)$ (وسع التوتر المضمَّن)الذي يدل على أننا بصدد إنجاز عملية تضمين الوسع .

ب ـ تردد الموجة الحاملة وتردد الإشارة المضمِّنة

$$\mathbf{m} = rac{\mathbf{U_{Smax}} - \mathbf{U_{Smin}}}{\mathbf{U_{Smax}} + \mathbf{U_{Smin}}}$$
 : علما أن تعبير نسبة التضمين هو

. $S_m = 2V$ واستنتج قيمة توتر المركبة المستمرة U_0 علما أن وسع الإشارة المضمِّنة U_0 . m

1 ـ 3 أرسم طيف ترددات هذا التوتر المضيّن .

$$\cos a \times \cos b = \frac{1}{2} \left(\cos(a+b) + \cos(a-b) \right)$$
:

2 _ استقبال موجات الإذاعة

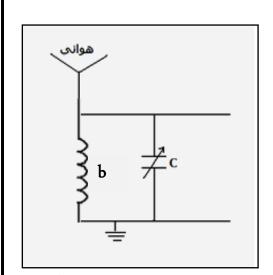
لإنجاز دارة انتقاء لتردد المحطة الإذاعية ، نقرن هوائي مستقيمي بدارة LC متوازية مكونة من مكثف سعته قابلة للضبط والوشيعة b معامل تحريضها L=0,2H .

2 _ 1 أعط تعبير التردد الخاص لهذه الدارة

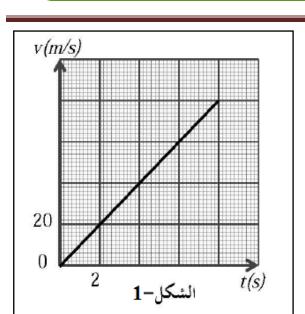
. عدد قيمة ${\bf C}$ التي تمكن من انتقاء الموجات المنبعثة من المحطة الإذاعية .

3 _ إزالة التضمين

تتكون دارة إزالة التضمين لجهاز الراديو من صمام ثنائي وكاشف غلاف 'R'C'مكون من موصل أومي مقاومته 'R ومكثف سعته C'=10nF من بين المقاومات التالية ، حدد قيمة 'R للحصول على موجات صوتية ذات جودة جيدة .


 100Ω , $1k\Omega$, $20k\Omega$, $200k\Omega$

التمرين الثالث: الميكانيك (5,5 نقط)


أثناء التدريبات التي تقوم بها فرق الصاعقة للمظليين ، استعملت طائرة عمودية حلقت على ارتفاع ثابت من سطح الأرض لإنزال المظليين دون سرعة بدئية .

1) ننمدج المظلي و لوازمه بمجموعة (S) مركز قصورها G و كتلتها M=80 ، نهمل تأثير دافعة أرخميدس . يقفز المظلي دون سرعة بدئية ، فيقطع مسافة M=1 خلال M=1 قبل فتح مظلته ، نعتبر حركته في هذه المرحلة سقوطا حرا . دراسة تطور M=1 ، سرعة المظلي بدلالة الزمن في معلم رأسي M=1 موجه نحو الأسفل ، مرتبط بمرجع أرضي ، مكنت من الحصول على مبيان الشكل M=1

أ ـ حدد طبيعة حركة المظلي مع التعليل .

الامتحان التجريبي رقم 2 المادة : الفيزياء و الكيمياء مدة الانجاز : 4h الثانوية التأهيلية الخوارزمي آسفي

ب ـ أحسب الارتفاع h .

ج ـ بتطبيق القانون الثاني لنيوتن ، استنتج g شدة مجال الثقالة .

h يفتح مظلته ، فيخضع لقوة احتكاك) بعد قطع المظلي الارتفاع

 $f = k.v^2$: الهواء تعبيرها

أ ـ بتطبيق القانون الثاني لنيوتن بيِّن أن المعادلة التفاضلية التي

تحققها ٧ سرعة المظلى تكتب على الشكل:

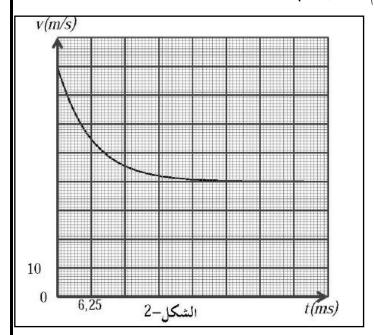
$$\frac{dv}{dt} = g\left(1 - \frac{v^2}{\beta^2}\right)$$

. m,g,k ثابتة يطلب التعبير عنها بدلالة $oldsymbol{eta}$

t=0 عند اللحظة (S) عند اللحظة = 0 ب يثل المقدار

. تسارع حركة مركز قصور المجموعة (S) في النظام الدائم .

ر السرعة الحدية v_{lim} للمجموعة (S)


اختر الجواب الصحيح من بين الإجابات السابقة .

4) يمثل الشكل 2 تغيرات سرعة مركز قصور المجموعة (S) بدلالة الزمن ، بدءا من لحظة فتح المظلة التي نعتبرها أصلا للتواريخ .

 v_{lim} أ ـ حدد قيمة السرعة الحدية

ب ـ بالاعتماد على التحليل البعدي ، حدد وحدة الثابتة k ، ثم أحسب قيمها .

. au و استنتج ثابتة الزمن t=0 عند $g=9,8m/s^2$. نعطى

الامتحان التجريبي رقم 2 المادة : الفيزياء و الكيمياء مدة الانجاز : 4h الثانوية التأهيلية الخوارزمي آسفي

الجزء الثانى :

، $h_1=35927km$ فعتبر قمرا اصطناعيا (S_1) كتلته m=200kg في دوران حول الأرض على مسار دائري ارتفاعه

و ينتمي إلى مستوى خط الاستواء . ندرس حركة (S_1) في المعلم المركزي الأرضي الذي نعتبره غاليليا .

 $G=6,67.10^{-11}(SI)$ عطي: ـ كتلة الأرض $M=6.10^{24}kg$ ـ شعاع الأرض الأرض $M=6.10^{24}kg$ ـ ثابتة التجاذب الكوني

- . منتظمة (S_1) بيِّن أن حركة القمر الاصطناعي (1
- رضي السرعة الخطية V ثم استنتج دوره المداري T . كيف يظهر S_1) بالنسبة لملاحظ أرضي (تدرس الحالتان) .
 - . $\mathbf{h_1}$ وزن القمر الاصطناعي (S_1) على نفس الارتفاع (S_1)
- $E_P = rac{G.m.M}{R} rac{G.m.M}{R+h}$: ب $\{$ القمر + الأرض $\}$ القمر + الأرض $\{$ القمر + الأرض الثقالية للمجموعة $\}$

حيث h هو ارتفاع القمر عن سطح الأرض.

- 4 ـ 1) أين تم اختيار الحالة المرجعية لطاقة الوضع الثقالية ؟
- 4 ـ 2) أحسب الطاقة الميكانيكية للمجموعة { القمر + الأرض } .
- : مستقيمية يستعمل القمر (S_1) للاتصالات اللاسلكية . علما أن الموجات التي يستقبلها يعيد إرسالها بكيفية مستقيمية :
- 5 ـ 1) أحسب طول القوس الفاصل بين النقطتين المنتميتين لخط الاستواء اللتين تحدان المنطقة المستفيدة نظريا من خدمات (S_1) .
- 5 ـ 2) لكي تستفيد مناطق أخرى من خدمات القمر (S_1) استعين بقمر اصطناعي (S_2) ، له نفس مدار و حركة القمر الأول . ما هي المسافة القصوية S_1S_2 لكي يتم الاتصال المباشر بينها ؟
- وم ارتفاع مداره $\left(\frac{1}{100}\right)$ من ارتفاع مداره مداره المعد مرور عدة سنوات على اشتغال القمر الاصطناعي (S_1) ، أصبح يفقد خلال كل دورة المنابق مداره المنجزة قبل وصوله الغلاف الجوي الذي سمك طبقته h'=100km ، حيث يتحطم نتيجة