المستوى: SM 2

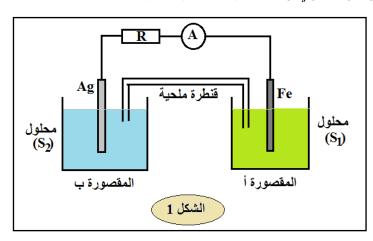
2014 / 2013

الفرض المحروس 2 الأسدوس 2 المادة : الفنزياء و الكيمياء

الثانوية التأهيلية الخوارزمي آسفى

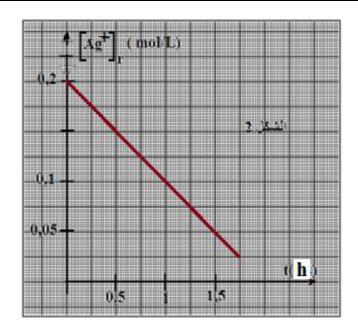
كيمياء (7 نقط): المركم فضة ـ حديد

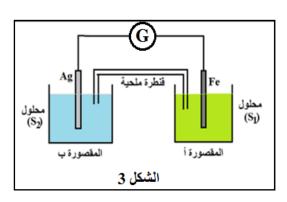
الجزء الأول : النظام التلقائي (عمود حديد ـ فضة).


 $N_A = 6,02.10^{23} mol^{-1}$ ثعطى: $e = 1,6.10^{-19} C$ ثابتة أفوكادرو : $e = 1,6.10^{-19} C$

يتكون العمود الممثل في الشكل (1) من مقصورتين : (أ) و(ب)

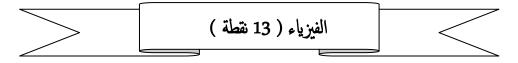
 $C_1 = 0,2mol \ / \ L$ تركيزه المولي $\left(Fe^{2+}_{(aq)} + SO^{2-}_{4(aq)}
ight)$ II تركيزه المولي $\left(S_1\right)$ على محلول $\left(S_1\right)$ لكبريتات الحديد $\left(S_1\right)$ الحديد $\left(S_1\right)$ تركيزه المولي $\left(S_1\right)$ على محلول $\left(S_1\right)$ على محلول


 $C_2 = \mathbf{0}, 2mol \ / \ L$ تركيزه المولي $\left(Ag^+_{(aq)} + NO^-_{3(aq)}
ight)$ تركيزه المولي $\left(S_2\right)$ لنترات الفضة $\left(V_2 = \mathbf{100}mL\right)$ تركيزه المولي . $V_2 = \mathbf{100}mL$


I عند اللحظة t=0 نربط العمود بموصل أومي و جماز أمبيرمتر . يشير الأمبيرمتر إلى قيمة ثابتة

يتم التطور التلقائي للمجموعة باختزال أيونات الفضة و أكسدة الحديد . و نعتبر التفاعل كلي و أن الأنواع الفلزية مستعملة بوفرة .

- 1) حدد معللا جوابك قطبية العمود .
- 2) أكتب المعادلة الحصيلة للتفاعل التلقائي الذي يحدث أثناء اشتغال العمود .
- . t المنحنى الممثل في الشكل 2 تغيرات التركيز $\left[Ag^{+}
 ight]_{r}$ للأيونات المتبقية في المقصورة (ب) بدلالة الزمن $\left[Ag^{+}
 ight]_{r}$
 - . t و C_2 ، e ، N_A ، V_2 ، I عبر عن التركيز $\left[Ag^+
 ight]_{t}$ عند لحظة t عند التركيز $\left[Ag^+
 ight]_{t}$
 - . I) باستغلال المبيان ، استنتج شدة التيار 2
 - . عمود . لشتغال العمود t_{max} المدة القصوية لاشتغال العمود
 - . في الحالة النهائية $C'_1 = \begin{bmatrix} Ag^+ \end{bmatrix}_f$ و $C'_1 = \begin{bmatrix} Fe^{2+} \end{bmatrix}_f$ في الحالة النهائية . 4



الجزء الثاني : شحن مركم فضة ـ حديد (النظام القسري)

بهدف شحن المركم بعدما استهلك كليا يتم ربطه بمولد .

- 1) حدد أي صفيحة يجب ربطها بالقطب الموجب للمولد لكي يشحن المركم .
- 2) أكتب معادلة التفاعل في حالة شحن المركم . نعتبر أن تفاعل شحن المركم كلمي .
 - . I = 0,15A هي الدارة خلال عملية الشحن هي (3
 - $\left[Ag^+
 ight]$ و أيونات الفضة و $\left[Fe^{2+}
 ight]$ و أيونات الفضة و 4 . C'_2 و أ C'_1 ، t الزمن t بدلالة الزمن t
- .(الحالة البدئية للعمود). $\left[Fe^{2+}\right] = C_1$ المتنتج المدة الزمنية اللازمة لشحن المركم بشكل كلي أي أن يصبح (

التمرين الأول: حركة متزلج (3،75 نقطة)

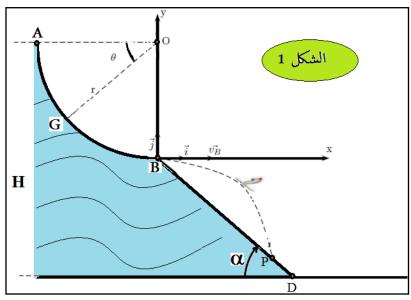
ينطلق متزلج كتلته m=75kg ، من نقطة A توجد على ارتفاع H من سطح الأرض ، بدون سرعة بدئية لينتقل عبر مسار دائري r=1,25m شعاع r=1,25m ، يوجد في مستوى رأسي .

(انظر الشكل 1) $\theta = \left(\overrightarrow{OA}, \overrightarrow{OG}\right)$ غملم موضع G مركز قصور المتزلج بالأفصول الزاوي

. ينزلق المتزلج بدون احتكاك على المسار الدائري ليغادره عندما يصل النقطة B بسرعة \overline{V}_B أفقية

. يتصل الجزء الدائري بجزء مستقيمي BD طوله BD طوله مائل بزاوية $\alpha = 30^\circ$ بالنسبة لمستوى سطح الأرض .

. $g = 10m / s^2$ نهمل جميع أنواع الاحتكاكات و نأخذ


- $oldsymbol{.}$ B بتطبيق مبرهنة الطاقة الحركية ، أوجد تعبير $oldsymbol{V_B}$ سرعة المتزلج لحظة مروره من $oldsymbol{0.5}$
- R عند نقطة المطبقة من طرف المسار الدائري على المتزلج عند نقطة R شدة القوة المطبقة من طرف المسار الدائري على المتزلج عند نقطة من المسار بدلالة كل من V سرعة المتزلج عند هذا الموضع و R و R و R و R
 - 0.75 ن 3) أوجد قيمة تسارع المتزلج عند الموضع B .
 - (B, \vec{i}, \vec{k}) بعد مغادرته للجزء الدائري يسقط المتزلج في النقطة P . أوجد معادلة مسار المتزلج في المعلم 0.5

 $m{B}$ نختار كأصل للتواريخ لحظة مروره من الموضع

P موضع سقوط مركز قصور المتزلج على السطح P على السطح 0.5 ن

ن 6) ما السرعة الدنوية V_{Bmin} التي يجب أن يمر بها المتزلج من 8 ليسقط على سطح الأرض بعد تجاوز المستوى المائل

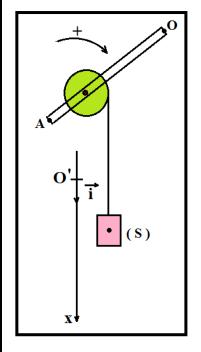
. *BD*

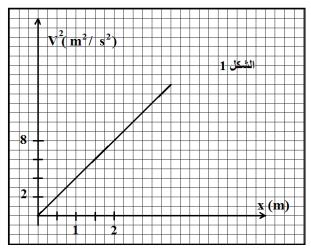
التمرين الثاني : دراسة مجموعة ميكانيكية (9,25 نقطة)

I) نعتبر التركيب أسفله و المتكون من :

عارضة فلزية OA طولها D و كتلتها محملة ملتحمة ببكرة شعاعها C = 0,4m قابلة للدوران باحتكاك حول محور أفقي C

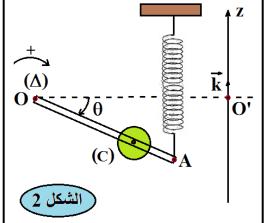
. $J_{\Delta} = \frac{1}{2}Mr^2 = 4.10^{-3} kg.m^2$ هو الدوران هو عزم قصور المجموعة بالنسبة لمحور الدوران هو (Δ)


m = 0,4kg على محلق بنهاية خيط غير مدود كتلته مهملة ملفوف جزء منه على مجرى البكرة . و نعتبر أن الخيط غير


. قابل للانزلاق على مجرى البكرة .نعتبر أن قوى الاحتكاك مكافئة لمزدوجة قوتين عزمها M_{c} ثابت

نحرر المجموعة بدون سرعة بدئية عند اللحظة t=0 ، حيث مركز قصور (S) منطبق مع أصل المعلم (O', \vec{i}) .

الدراسة التجريبية لحركة الجسم (S) مكنت من خط تغيرات V^2 بدلالة x (الشكل 1).


مع V سرعة (S) و x أفصول مركز قصوره .

- . (S) احسب a تسارع الجسم (a

- 3) حدد طبيعة حركة البكرة .
- . M_c بتطبيق العلاقة الأساسية للديناميك ، أحسب (4)
- 5) ينفصل الخيط عن البكرة بعد أن قطع (S) المسافة h=2m . أوجد n عدد الدورات المنجزة من طرف البكرة قبل أن ينفصل الخيط .

- O لدراسة تذبذبات نواس وازن ، نعلق العارضة من طرفها O ، ثم نثبت أحد طرفي نابض رأسي كتلته محملة و صلابته O عند النقطة O الطرف الآخر للنابض مثبت بحامل .
 - . $d = \frac{2}{3}L$ قصور البكرة (C) يبعد عن مركز قصور البكرة
 - : بيِّن أن $\{\ (\ C)\$ بيِّن أن $\}$ بيِّن أن $\{\ (\ C)\$ بيِّن أن $\}$ بيِّن أن $Mg = \frac{3}{2} K. \Delta I_0$

حيث M كتلة المجموعة و Δl_0 إطالة النابض عند التوازن . تكون المجموعة في توازن عندما تكون A في نفس مستوى النقطتين O و O' أصل المعلم الرأسي O' O' .

2) نزيج العارضة عن موضع توازنها المستقر بزاوية θ_m صغيرة جدا في المنحى الموجب ثم نحررها بدون سرعة بدئية عند لحظة نعتبرها أصلا للتواريخ . فتأخذ المجموعة حركة تذبذبية حول موضع توازنها المستقر الذي نعتبره أصلا للأفصيل الزاوية . $\sum M_{\Delta} = -k.L^2.\theta$. $\sum M_{\Delta} = 0$. \sum

 $\sin heta pprox heta$ نعتبر أن $\cos heta pprox heta$ بالنسبة ل θ جد صغيرة حيث تبقى النقطة دائمًا في اتجا رأسي خلال تذبذب المجموعة ، و $\cos heta pprox heta$. . بتطبيق العلاقة الأساسية للديناميك على المجموعة ، أثبت أن المعادلة التفاضلية التي يحققها الأفصول θ تكتب على

 $\ddot{\theta} + 2,25 \frac{K}{M} \theta = 0$: ناشکل

نعطي عزم قصور المجموعة بالنسبة للمحور (Δ) هو $J'_{\Delta}=M.d^2$. ج ـ نختار المستوى الأفقي المار من O' مرجعا لطاقة الوضع الثقالية ، و الحالة التي يكون فيها النابض غير مشوه مرجعا لطاقة الوضع المرنة . أعط تعبير E_m الطاقة الميكانيكية للمجموعة ثم بيّن أنها تنحفظ .