الثانية بالالوريا سلك ع ن 1 **2016/2015**

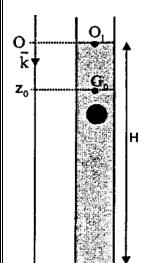
فرض رقم 2 (المرة ساعتان ثانوية الأمام البخاري التأهيلية حمارة

الفيزياء: 13 نقط

الفيزياء 1:

ندرس في هذا الجزء حركة مركز القصور G لكرية متجانسة كتلتها m في سائل لزج داخل مخبار.

نمعلم موضع G في كل لحظة بالأنسوب Z على المحور الرأسي O, \vec{k}) الموجه نحو الأسفل حيث أصله منطبق مع النقطة O_1 من السطح الحر للسائل .


عند لحظة t_0 نعتبرها أصلا للتواريخ $(t_0=0)$ ، نحرر الكرية بدون سرعة بدنية من موضع يكون فيه G منطبقا مع الموضع G_0 ذي الأنسوب $Z_0=3\,\mathrm{cm}$ (الشكل أسفله).

تخضع الكرية أثناء سقوطها داخل السائل، بالإضافة إلى وزنها P، إلى :

. وقوة الاحتكاك المانع : $\vec{f} = -\lambda.v.\vec{k}$ حيث λ معامل الاحتكاك المانع و v سرعة \vec{f} عند لحظة \vec{f}

- دافعة أرخميدس : $\vec{F} = -\rho_{r} \cdot V_{s} \cdot \vec{g}$ حيث g شدة الثقالة و V_{s} حجم الكرية و ρ_{r} الكتلة الحجمية للسائل

. ناخذ:
$$\rho_{\rm s} = 0.8 \, {\rm m.s^{-2}} = 0.15$$
 ناخذ: $\rho_{\rm s} = 0.8 \, {\rm m.s^{-2}} = 0.15$ ناخذ: $\rho_{\rm s} = 0.8 \, {\rm m.s^{-2}}$ الكتلة الحجمية للمادة المكونة للكرية

$$\frac{dv}{dt} + \frac{\lambda}{\rho_s V_s} v = g \left(1 - \frac{\rho_\ell}{\rho_s}\right)$$
: بين أن المعلالة التفاضلية التي تحققها سرعة G تكتب -1

. $t_0 = 0$ عند اللحظة a_0 عند اللحظة -2

3- أوجد القيمة ,v للسرعة الحدية لحركة G.

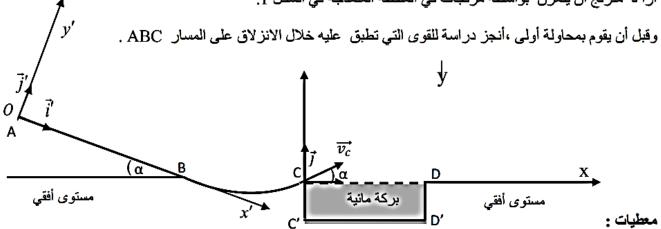
 \mathbf{v}_1 لتكن \mathbf{v}_1 قيمة سرعة \mathbf{v}_2 عند اللحظة $\mathbf{v}_1 + \mathbf{t}_0 + \mathbf{t}_0$ و بنايا عند اللحظة

. خطوة الحساب $\mathbf{t_2} = \mathbf{t_1} + \Delta \mathbf{t}$ خطوة الحساب

 $\tau = \frac{\rho_{\rm S}.V_{\rm S}}{\lambda}$ الزمن المميز للحركة : $\frac{v_{\rm S}}{v_{\rm I}} = 2 - \frac{\Delta t}{\tau}$ باعتماد طريقة أولير بين أن $\frac{v_{\rm S}}{v_{\rm I}} = 2 - \frac{\Delta t}{\tau}$

احسب v_1 و v_2 . ناخذ $\Delta t = 8.10^{-3} \, s$.

تاریخ
$$v = v_t \cdot \left(1 - e^{-\frac{t}{\tau}}\right)$$
: تاریخ حل المعادلة التفاضلیة علی الشکل تاریخ


اللحظة التي تأخذ فيها سرعة الكرية 99% من قيمتها الحدية.

 G_0 علما أن ارتفاع السائل في المخبار هو $H=79,6\,\mathrm{cm}$ و أن مدة حركة الكرية داخل السائل انطلاقا من G_0 حتى قعر المخبار هي $\Delta t_c=1,14\,\mathrm{s}$ ، أوجد المسافة d التي قطعتها الكرية أثناء النظام الانتقالي. (نعتبر أن النظام الدائم يتحقق ابتداء من اللحظة t_c و نهمل شعاع الكرية أمام الارتفاع d).

Jamil-rachid.jimdo.com

الفيزياء 2:

أراد متزلج أن يتمرن بواسطة مزلجات في المنطقة المنمذجة في الشكل 1.

- شکل 1
- شدة الثقالة 2-8 m.s و g=9 ؛
- AB مستوى مانل بزاوية $lpha=20^\circ$ بالنسبة للمستوى الأفقى المار من النقطة B ؛
 - عرض البركة المانية C'D'= L=15m ؛
 - نماثل المتزلج ولوازمه بجسم صلب (S) كتلته m=80kg ومركز قصوره G.
 - نعتبر في الجزء AB أن الاحتكاكات غير مهملة وننمذجها بقوة ثابتة.

1- دراسة القوى المطبقة على المتزلج بين A وB.

ينطلق المتزلج من النقطة A ذات الأفصول $x'_A = 0$ في المعلم الممنظم المتعامد (O, \vec{i}', \vec{j}') ، بدون سرعة بدنية عند لحظة نعتبرها $x'_A = 0$ الشكل A ذات الأفصول $x'_A = 0$ المستوى المائل AB حسب الخط الأكبر ميلا بتسارع ثابت $x_B = 0$ عيث يمر من النقطة $x_A = 0$ بسرعة $x_B = 0$.

- 1.1-بتطبيق القانون الثاني لنيوتن أوجد، بدلالة α و g و α ، تعبير معامل الاحتكاك α ؛ مع ϕ زاوية الاحتكاك ، المعرفة بالزاوية المحصورة بين المنظمي على المسار واتجاه متجهة القوة المقرونة بتأثير السطح على المتزلج.
- . $an \varphi$ يمر المتزلج من النقطة $an \varphi$ احسب قيمة التسارع $an \varphi$ واستنتج قيمة معامل الاحتكاك $an \varphi$
- بين أن شدة القوة \overrightarrow{R} المطبقة من طرف السطح AB على المتزلج تكتب على الشكل : \overrightarrow{R} المطبقة من طرف السطح AB على المتزلج تكتب على الشكل : \overrightarrow{R} المطبقة \overrightarrow{R} . \overrightarrow{R}

2 - مرحلة القفز

عند لحظة t=0s نعتبرها أصلا جديدا للتواريخ, يغادر المتزلج عند النقطة t=0 الجزء BC بسرعة V_c تكون متجهتها الزاوية $\alpha=20^\circ$

- 2. 1- أوجد التعبير الحرفي للمعادلتين الزمنيتين لحركة خلال مرحلة القفز في المعلم (C;i;j).
 - . S مسار کا احداثیتی قمة مسار کا Vc = 16.27 m /s مسار کا . 2 محدد في حالة
- v_c ك لكي لا يسقط المتزلج في البركة المانية واستنتج القيمة السرعة v_c الكنيوية لهذه السرعة .

الكيمياء: 7 نقط

ننجز التحليل الكهرياني لمحلول حمض الكبريتيك ${
m Cu(s)}^{-1}$ ${
m Cu(s)}^{+1}$ باستعمال الكترود نحاس ${
m Cu(s)}^{-1}$ مرتبط بالقطب الموجب للمولد ، والكترود من الغرافيت (لايساهم في التفاعل)

الملاحظات التجريبية: يتصاعد غار ثناني الهيدروجين عند الكاتود ، ويظهر لون أزرق عند الأنود

 $m H^+(aq)/H_2(g)$ ، $m Cu^{2+}(aq)/Cu(s)$ ، $m S_2\it O_8^{2-}$ m (aq)/ $m S\it O_4^{2-}$ m (aq) نعطي: المزدوجات: $m O_2(g)/H_2O(l)$

 $M(Cu) = 63.5 \text{ g.mol}^{-1}$ ، $V_m = 24 \text{ L.mol}^{-1}$ ، $F = 9.65 \cdot 10^4 \text{ C.mol}^{-1}$: ثابتة الفارادي

- أسئلة:
- 1. أرسم التبياتة التجريبية ، محددا منحى التيار الكهربائي
- 2. استنتج منحى مختلف حملات الشحنات (الالكترونات ،الإيونات الموجبة والسالبة)
 - 3. عرف الأتود والكاتود (حدوث اكسدة أم اختزال)
 - 4. التفاعلات الممكنة
 - أ. أكتب معادلات التفاعلات الممكن حدوثها عند الأنود
 - ب. أكتب معادلات التفاعلات الممكن حدوثها عند الكاتود
- 5. باستعمال الملاحظات التجريبية ، حدد التفاعل الحاصل عند الأنود والتفاعل الحاصل عند الكاتود
- 6. استنتج المعادلة الحصيلة للتفاعل أثناء التحليل الكهرباتي ، ثم اعط الجدول الوصفي لهذا التفاعل
- 7. أعط تعبير تغير كمية مادة النحاس Δt Δt الله آ و Δt و Δt و Δt أشدة النيار الذي يجتاز هذا المحلل خلال Δt ، ثم احسب قيمتها إذا كان Δt ومدة الاشتغال Δt = 3 h ومدة الاشتغال
 - 8. استنتج كتلة النحاس المختفية (mr (cu خلال نفس مدة الاشتغال
 - 9. أحسب حجم الغاز المحصل عليه خلال نفس المدة
 - 10. ما المدة الزمنية اللازمة للحصول على $V'(H_2) = 30000 L'$ من غاز الهيدروجين

Jamil-rachid.jimdo.com